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High-Z shells offer new opportunities to assess power 
balance in a confined, burning plasma

How important are radiation losses in a 
volume burn system?
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Kirkpatrick and Wheeler, 
Nucl. Fusion 21, 389 (1981)

High-Z
Wall

heating

How does power balance change with the introduction of high-Z mix or growing 
3D surface instabilities?

xRAGE simulation J. Sauppe
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Fill tube
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Goal of National program is to demonstrate several-fold 
yield amplification (alpha-heating) with high-Z shells

• Double-Shell capsules:
– Lower convergence ratio of fuel to reach burn
– Do not require sophisticated pulse shaping
– Are more difficult to build and diagnose

Courtesy of S. MacLaren (LLNL)

• Pushered single shell 
(PSS) capsules:
– Utilize many design 

aspects of LLNL indirect-
drive ICF program

– Extension to high-Z (Cr, 
Mo, W) layer on inner 
surface
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To achieve volume burn in double shell capsules requires 
accelerating interior high-Z pusher to 200+ km/s

outer
ablator

foam

DT

Pusher shell

tamper

Laser turns off

KE transfer
to inner shell

energy absorbed

IE in fuel DT burn
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Implosion trajectory of double shell capsule

Au L-shell preheat

200 eV radiating 
shock

xRAGE simulation J. Sauppe

Hohlraum x-rays
Hohlraum produces thermal (top) 
and non-thermal (bottom) x-rays

Au L-shell (line emission) 
preheat spectrum

*Montgomery, Daughton et al., Phys. Plasmas 25, 092706 (2018)
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Our research is focused on understanding double shell 
physics from the outer shell through burn
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Our research is focused on understanding double shell 
physics from the outer shell through burn
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Diagnosing symmetry uses 
laser-driven x-ray source

Our NIF platform uses indirect-drive and laser power 
balance to control symmetry

1.5 MJ laser energy pulse shape

3.5 ns 5.0 ns

Inner cone

Outer c
one

10
.1

3 
m

m

5.75 mm

ne

Only lower cones shown

Au hohlraum

2.2 mm 
Outer shell

We benefit from 10+ years of hohlraum
modeling advances through indirect-drive 
NIF campaigns

Zr 
backlighter
(16.3 keV)

Convergent ablator platform

*E.C. Merritt et al., Phys. Plasmas 26, 052702 (2019)
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Foam pressure contour during shell collision 
mediates shape transfer process

f dt =mdv∫
pAdt =mdv∫

Integrate at each q

Shock reaches W/DT 

interface

Pole

Equator

Main shock 
dominating symmetry

Outer shell symmetry and 

shock release dominate at 

peak m = inner shell mass
A = inner shell surface
p = avg. foam pressure
dv = velocity increment

Radial impulse 
acceleration of inner 

shell
Point design capsule

Shape 
imprinting

HYDRA (LLNL) simulation of 
angular variation in foam 
pressure between shells

DT

W
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Hydro-growth radiography (HGR) 
platform enhances our view of feature 

evolution in the outer shell

Recent NIF data has provided new insight into 
hydrodynamics of multi-shell engineering features

Joint gap 3-5 micron

BT-900 ps

BT-500 ps

Backlighting full double shell provides clear view 
of feature interaction with metal inner shell

xRAGE

Cr inner 
shell

Al ablator

Cr/Be bi-
layer shell

Al 
ablator

35 mg/cc 
CH foam

Metrology (CT, Lindsey Kuettner MST-7)

Joint feature 
opening 

Au cone

Al hemi-shell ablator

Zn He-a x-rays

Shot RI: P. Keiter (LANL)
Designer: J. Sauppe (LANL)
Target engineering: T. Cardenas (LANL)*B. M. Haines et al., Phys. Plasmas 28, 032709 (2021)

Mass pile-up

20
0 
µm

Engineering 
features
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40 keV radiography provides clear view 
of high-Z inner shell (xRAGE simulations)

We are developing (LANL-first) high-energy 
radiography platforms on NIF

• Collected our first ARC data this week!
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Object radius is ~150 micron

ARC beamlets

Unconverted light shield

Lead NIF Shot RI: Paul Keiter

Hohlraum

LANL Dshell platform uses Advanced 
Radiography Capability (ARC) high-

intensity laser

Shape 
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Engineering 
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High charge state Au emits L-shell radiation preheating 
inner shell

Optical interferometry (NIF VISAR*) has placed rigorous 
constraints on state of tungsten pusher at onset of 

shell collision

pole

equator

VISAR analysis M. Millot, 
P. Celliers (LLNL)

VISAR

AlWAu cone

Measured W/fuel interface velocity and symmetry 
due to Au L-shell preheat

Pole preheat
Equator preheat

Symmetric main 
shock arrivalMain shock

Au L-shell shock

W

Be

DT

*H.F. Robey, P.M. Celliers et al. Phys Rev Letts. 108 (2012)

Calculated shock 
front locations

xRAGE hohlraum (B. Haines)

La
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r c
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Hard x-ray 
pre-heat
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Engineered density gradients1 are a promising 
method for controlling instability growth

Stabilizing pusher/foam 
interface is needed to reach 

high fuel rR and Tion

xRAGE, Irina Sagert ra
di

us

GA gradient shell

Courtesy Hongwei Xu (General Atomics)

100% W (19 g/cc)

100% Cr (7 g/cc)
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1J.L. Milovich, P. Amendt, et al., Phys. Plasmas 11 (2004)

Foam/high-Z 
shell stability
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Our research is focused on understanding double shell 
physics from the outer shell through burn
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Before we can make full use of advanced hohlraums we 
must address open physics and engineering questions

1.0 MJ 1.5 MJ

Pusher instability growth

L-band 
multiplier

Yield/1X 
case

Pusher 
vel. (km/s)

Fuel rr/ 1X 
case

1X 100% 210 100%

2X 95% 207 83%

4X 85% 203 78%

Hard x-ray preheat can decrease 
performance

Ablator shape asymmetries lead to 
non-radial flows prior to burn

Engineering features can lead to jetting 
and mix into the fuel

D
ensity

M
aterial

D
T

W

Be

foam

Computed tomography 
(CT) of as-built Al ablator 
from hemi-shells
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High-Z (tungsten) shells are needed to assess our 
proximity to ‘robust burn’ regime

*Montgomery, Daughton et al., Phys. 
Plasmas (2018)

For alpha-heating rate to 
exceed expansion losses at 

minimum volume

TkeV >
4

ρR*  ftamp  Q̂( )
0.4

Surrogate CD fuels provide capability to 
probe nuclear performance without DT filling

Alpha-heating off

High D-D ion temperatures will indicate robust fuel 
compression by pusher shell
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xRAGE simulations suggest Au coating in gap significantly 
reduces joint feature growth

Al mass surplus

X-ray image of as-built Al shell (Tana Cardenas, MST-7)

xRAGE simulations showing transition from mass deficit 
to surplus with more Au in gap (D. Stark, XCP-6)
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xRAGE graded density simulations predict strong 
stabilization for mid and high mode numbers

Mode 30 Mode 60 Mode 90 Mode 150

xRAGE simulations 
by D. Stark (XCP-6)

xRAGE simulations of 125 nm perturbation applied at Be/foam interface with Be/W gradient (right)
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Machine learning (ML) methods currently in use to explore many possible gradient profiles 
(N. Vazirani, M. Grosskopf)
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High-Z shells offer new opportunities to assess power 
balance in a confined, burning plasma

*Montgomery, Daughton et al., Phys. Plasmas 25, 092706 (2018)

Fusion heating rate must exceed 
expansion losses

TkeV >
4

ρR*  ftamp  Q̂( )
0.4

Q̂

fraction a-absorbed

How important are radiation losses in a 
volume burn system?

Pa > PPdV

• Ensures burn begins before peak 
compression

• ‘Robust’ to implosion asymmetries 
and pusher/fuel mix

• Does not include radiation losses...
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In 2020 we will extend the double shell platform to observe L-shell preheat 
symmetry using mirrored keyhole

HYDRA 2D integrated predictions for inner shell motion at 
(left) pole and (right) equator 

View inside inner shell

Line VISAR

• W inner shell more sensitive to >15 keV x-rays present
• Cr inner shell greater sensitivity to details of L-shell-only 

spectrum
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Robust burn occurs when fusion heating rate exceeds PdV work of the gas on 
the shell

!qfus > !qPdV

!qfus =
ni
2 σ v QαV
MDT

!qPdV =
P
MDT

dV
dt

⎛
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σ v ≈ 2.2×10−20TkeV
4  cm3 s   2.5< TkeV < 5.5

TkeV >
4

ρR*  ftamp  Q̂( )
0.4

V

A cs /ftamp

R* ≈ 3V A

Q̂

no-burn Ti at stagnation

metric for robust burn (similar to fall-line)
• conditions less than à sensitive to asymmetry

• conditions greater than à robust against asymmetry
• means that burn begins prior to stagnation

fraction a-absorbed

Bill Daughton and David Montgomery (LANL)
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Cold Curves of (P, r) illustrate why a dense, high-Z 
pusher may be attractive for ICF

cold curves from SESAME

P ~ r
5/3500 Gbar

pusher
(piston)

r0

DT
gas

r/r0 ~ CR2

(thin shell)

• CR ~ 40 for DT ice pusher
• CR ~ 10 for Au pusher

High-Z shells reduce radiation 
and conduction losses
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The LANL 1.11 mm design trades-off high 1D yield 
for higher stagnation temperatures and pressures

Higher 1D yieldBest fall line

Simulations from J. Sauppe (XCP-6)
Design by B. Daughton (XTD-PRI)

2 MJ1 MJ

Shape imprinting changes with 
shell aspect ratio (and CR)

equator

pole

• Collision pressure increases, imprint 
decreases with smaller fuel radius (“fall-
line”) design
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Double Shell ARC platform requires 
intermediate magnification, high-energy 

backlighting

N191031 Be/Cr PSS

RI: E. Dewald, D. Martinez
Design: S. MacLaren

Compton Rad. DShell ARC PSS ARC

Object radius (µm) <100 50-200 200-400

Magnification >90 50 18.5

Diagnostic axis 90-78 90-315 90-124

BL type (2 ea.) 10 µm Au, U-Flag 25 µm Au, U-Flag 25 µm Au, U-Flag

Targ. Insertion cryoTARPOS TARPOS TARPOS

ARC energy 750 J/beamlet 750 J/beamlet 750 J/beamlet

ARC pulse 30 ps 30 ps 30 ps

215 µm

990 µm

Al, 2.7 g/cc

CH foam, 
35 mg/cc Be tamper,

1.85 g/cc 
40 µm thick

Cr inner,
7.19 g/cc, 
40 µm thick

1110 µm

CD foam,
200 mg/cc

Comparison of ARC backlighting platforms

DShell object range

Double shell capsule ARC beamlets

Unconverted light shield

ARC target engineer: Scott Vonhof
(LLNL)

Hohlraum

‘U-flag’ wire backlighters



265/5/21Los Alamos National Laboratory | 2021 Nuclear and Particle Futures

Double shell VISAR platform allows us to benchmark both preheat and main 
shock symmetry
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1DA Callahan et al., Phys. Plasmas (2018)

3 ns 4 ns 5 ns

Au bubble 
scaling1

Au L-shell radiation emanate from Z* > 60 regions in outer cone Au bubble 
(HYDRA integrated hohlraum simulations, inner laser cones shown)

2-axis NIF VISAR shot coming 
September 2020

Z* > 60

VISAR

Target engineering: Tana Cardenas, 
Theresa Quintana, Lindsey Kuettner, Brian 
Patterson

Constraining the Au L-shell emission helps to further advance hohlraum modeling


